CHROM, 14,963 ### Note # Thorium(IV) nitrate – a new chromogenic reagent for detection of phenols on thin-layer plates HARSH KUMAR, ANIL SHARMA and S. S. CHIBBER* Department of Chemistry, University of Delhi, Delhi-110007 (India) (First received June 30th, 1981; revised manuscript received April 6th, 1982) Besides iron(III) chloride, which is a very widely used chromogenic reagent, several other reagents have been developed¹⁻⁴ for the detection of phenolic compounds on thin-layer plates. These include titanium(IV) chloride in concentrated HCl $(20\%)^2$, an aqueous solution of SeO₂ $(3\%)^3$ and for aminophenols a solution of phenol in 20% Na₂CO₃ $(1\%)^3$. In the last case a process of overspraying with concentrated HCl was also adopted for immediate colour change. A specific reagent for the detection of o-dihydroxyl groups in phenolic compounds has also been reported^{4.5}. This is Benedict's reagent, an acidic solution of sodium tungstate followed by addition of alkali and a solution of sodium cobaltinitrite. Although iron(III) chloride is the most extensively used spray reagent, its colour range is not quite broad enough to identity a particular phenol. Titanium(IV) chloride, employed recently for phenolic compounds, has a similar drawback. In view of these considerations, thorium(IV) nitrate has been used for the detection of phenols and the results are reported in this paper along with a comparative study of titanium(IV) chloride and iron(III) chloride. ## **EXPERIMENTAL** Glass plates $(20 \times 5 \times 0.3 \text{ cm})$ were coated with silica gel G (E. Merck) and then activated at 130° C for 30 min before use. 0.01 M Methanolic solutions of phenols were used as stock solutions. A Hamilton microsyringe was used for spotting the solutions. The plates were developed by spraying with (i) Th(NO₃)₄·6H₂O in methanol (4%), (ii) TiCl₄ in concentrated HCl (20%), (iii) methanolic FeCl₃ (2%), (iv) heating after spraying with these reagents at 120° C for 30 sec or 2 min and keeping the heated plate overnight. ### RESULTS AND DISCUSSION The phenols were chromatographed on silica-gel plates and then sprayed with a 4% methanolic solution of thorium(IV) nitrate. Table I records the colour produced on (i) spraying with thorium(IV) nitrate, (ii) heating the plates at 120°C for 30 sec or (iii) for 2 min, (iv) keeping the heated plates overnight. The limits of detection after development were 1-3 for all the compounds tested. TABLE I COLOURS OF PHENOLS OBTAINED WITH THORIUM(IV) NITRATE ON THIN-LAYER PLATES 1 μ l of a 0.01 M methanolic solution of each phenol was spotted unles indicated otherwise. | Compound | Initial
colour | After
heating for
30 sec | After heating
for 2 min | Colour
with
FeCl ₃ * | Colour
with
TiCl ₄ | After heating for | | |----------------------|-----------------------|--------------------------------|----------------------------|---------------------------------------|-------------------------------------|-------------------|--| | | | | | | | 30 sec | 2 min | | Phenol** | _ | _ | Grey | Violet | Yellow | Yellow | Yellow | | o-Cresol | _ | Dull
violet-grey | Violet | Brown | Brownish-
violet | Brown | Brown | | m-Cresol | Dull
greyish brown | Dull
violet-grey | Violet | Brown | Brown | Brown | Brown
with
yellow | | p-Cresol | Buff | Faint violet | Light
violet | Buff | Brown
with
yellow
ring | Light
brown | Muddy | | o-Aminophenol | Greyish
violet | Grey | Violet | Brown | Violet | Violet | Brownish
violet | | m-Aminophenol | Brownish
grey | Faint violet-grey | Dark brown | Brown | Light
violet | Light
violet | Lìght
brown | | p-Aminophenol | Faint greyish violet | Violet | Violet | Reddish
brown | - | ~ | | | p-Bromophenol | Light pink | Faint violet | Violet ring | _ | Light
yellow | Muddy | Muddy | | p-Chlorophenol** | - | Yellow | Brown | - | Dark
brown | Dark
brown | Dark
brown | | 2,4-Dichlorophenol | Faint fawn | Brown | Fawn | - | | _ | ~ | | 2,4,6-Tribromophenol | ~ | Fawn-red | Dirty grey | _ | - | | Yellow | | p-Nitrophenol** | - | _ | Yellow | Buff | _ | Light
yellow | Yellow | | Catechol | Greyish
green ring | Grey | Green | Violet-
green | Brownish orange | Brownish orange | Brown | | Resorcinol | Yellow | Yellow with violet ring | Dull brown | Violet | Light
brown | Light
brown | Light
brown | | Quinol | Light brown | Brown | Chocolate | _ | Orange | Orange | Orange | | Phloroglucinol** | <u>-</u> | _ | Dull brown | Violet | Brown
ring | Brown | Yellow
with
light
brown
ring | | Pyrogallol | Green ring | _ | Chocolate | Violet | Brown | Brown | Brown | | z-Naphthol | Pinkish
brown | Bluish grey | Violet with brown ring | Violet | Brown | Brown | Brown | | β-Naphthol | Brown ring | Reddish
brown ring | Red | Buff | _ | _ | - | | Thymol** | | _ | Pink | - | _ | - | _ | | 2,4-Dimethylphenol | Yellow | Muddy | Brownish
pink | Buff | Muddy | Muddy | Muddy | ^{*} Colour does not change on heating. ^{** 2} μ l of the solution were used. A comparative study with titanium(IV) chloride and iron(III) chloride was also undertaken. A distinctive feature of thorium, as a chromogenic reagent, is that it gives a colour with all the phenols. It also gives a wider range of colours compared to iron(III) chloride and titanium(IV) chloride for which the colour distinction is not quite as sharp, as is evident from the table. The range is so wide that one can even identify a particular phenol on the thin-layer plate. Compounds such as 2-methoxyethanol, chlorohexanol and keto—enol tautomers such as ethyl acetoacetate do not give any colour with thorium(IV) nitrate. It was observed that addition of a methanol solution of thorium(IV) nitrate to some phenols gives a colour in some cases but no colours with a few others, even on heating (e.g., thymol, pyrogallol, 3-aminophenol and 2,4,6-tribromophenol). On thin-layer plates coated with silica gel G a coloured spot was obtained with all the phenols (Table I). The rôle played by silica gel is not clear. #### REFERENCES - 1 I. S. Bhatia, K. L. Bajaj, A. K. Verma and J. Singh, J. Chromatogr., 62 (1971) 471. - 2 N. A. M. Eskin and C. Frenkel, J. Chromatogr., 150 (1978) 293. - 3 S. C. Mitchell and R. H. Waring. J. Chromatogr., 151 (1978) 249. - 4 K. Egger, in E. Stahl (Editor), Thin layer Chromatography: A Laboratory Handbook, Springer, New York, 2nd ed., 1969, p. 705. - 5 H. Reznik and K. Egger, Z. Anal. Chem., 183 (1961) 196.